Some Trigonometric Identities Involving Fibonacci and Lucas Numbers

نویسنده

  • H. Shirdareh Haghighi
چکیده

In this paper, using the number of spanning trees in some classes of graphs, we prove the identities: Fn = 2n−1 n √

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibonacci Identities and Graph Colorings

We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

متن کامل

ar X iv : 0 80 5 . 09 92 v 1 [ m at h . C O ] 7 M ay 2 00 8 FIBONACCI IDENTITIES AND GRAPH COLORINGS

We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

متن کامل

ar X iv : 0 80 5 . 09 92 v 2 [ m at h . C O ] 8 J ul 2 00 8 FIBONACCI IDENTITIES AND GRAPH COLORINGS

We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

متن کامل

Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums

As in [1, 2], for rapid numerical calculations of identities pertaining to Lucas or both Fibonacci and Lucas numbers we present each identity as a binomial sum. 1. Preliminaries The two most well-known linear homogeneous recurrence relations of order two with constant coefficients are those that define Fibonacci and Lucas numbers (or Fibonacci and Lucas sequences). They are defined recursively ...

متن کامل

Computational Aspects of Graph Coloring and the Quillen–Suslin Theorem

We generalize both the Fibonacci and Lucas numbers to the context of graphcolorings, and prove some identities involving these numbers. As a corollary we obtain newproofs of some known identities involving Fibonacci numbers such asFr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009